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Simple First-Order Decay 
(Create this in Vensim!) 

 

People with
Virulent
Infection Deaths from

Infection

Mean time until
Death

Use Formula:  People with Virulent Infection/Mean time until Death 

Use Initial Value:   1000 



First Order Delays and Transition 
Processes 

• We can think of first order delays as representing 
a deterministic approximation to a population 
experiencing a memoryless (Poisson) stochastic 
transition process 

• The system is “memoryless” because the chance 
of e.g. a person leaving in the next unit of time is 
independent of how long they’ve been there! 

• The probability distribution of residence time in 
the stock is exponentially distributed 



Dynamics of Stock? 
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Dynamics of (Rate of)  
Death Flow? 
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• Alpha is per-time-unit likelihood of death 
– Chance of death over small ∆t is ∆t 

– If x people are at risk, # dying over ∆t is x*(Likelihood of 
death over ∆t)=x(∆t)= x∆t 

– When people die, they flow out => cause a negative 
change in x. 

– We denote the change in x over the time ∆t as ∆x 

          Thus ∆x= -x∆t 

• As x is depleted (becomes smaller), ∆x becomes 
smaller as well (for a fixed ∆t) 

 

 

 

People (x)
Deaths

Death Rate (alpha)



Approximate Dynamics 
Suppose  
      x(0)=1000 
      ∆t=1 
=. 2 

 



Flow Rate Dynamics 
• The total change in x over the time ∆t is ∆x 

          Thus ∆x= -x∆t 

– This might be 10 people over a timeframe of .1 year (~36.5 
days) 

• The rate of change of x over given time ∆t is ∆x/∆t 

     This is just the sum of all of the flows 

     For system, ∆x/∆t =(-x∆t)/∆t=-x=-People*DeathRate 

       Because x (People) changes, this flow rate changes 
over the course of the time we are observing 

     Suppose time is measured in years; then for our 
example above, ∆x/∆t = 10/.1 = 100 people per year 

 



Approximate Dynamics: Net Flow Rate 
Reminder: Suppose  
      Initial x=1000 
      ∆t=1 
=.2 

 



Why is This Approximate? 
• Our previous graphs used a value of ∆t=1 

• In calculating the change (∆x) from t to t+∆t (here, 
t+1), we are assuming that the flow rate 
(people/year) stays constant in that time 

– Recall: In general, this flow rate will be determined by 
the value of stocks 

– So in assuming that the flow rate remains constant, we 
were basically assuming that the values of the stocks 
stay constant over time ∆t 

• For our system, given that the value of the stock x (People) 
declines by around 20% per time unit, this is not a very good 
assumption! 

 



How Can We Reduce the Error? 
Try a Smaller ∆t 

• Let’s work forward for ½ of a year at a time instead 
of for a full year 

 x(0)=1000 

 ∆t=.5 

 =.1 

 

 



Approximate Dynamics: Net Flow Rate 

∆t=1 

 

∆t=.5 ∆t=.25 



Vensim has a Step Size! 
(Set via Model Menu/Settings Item) 

 



Impact of Step Size on Simulation 

 



Continuous  
Mathematics 

(Calculus!) 
 

• Alpha is per-time-unit likelihood of death 
– Chance of death over small dt is dt 

– If x people are at risk, # dying over dt is x*(Likelihood of 
death over ∆t)=x(dt)= xdt 

– When people die, they flow out => cause a negative 
change in x. 

– We denote the change in x over the time dt as ∆x 

          Thus dx= -xdt 

• As x is depleted (becomes smaller), dx becomes 
smaller as well (for a fixed dt) 

 

 

 

People (x) Incident Cases of
Diabetes

Per Capita Diabetes
Rate (alpha)



Flow Rate Dynamics: Continuous 
• The total change in x over the time dt is dx 

          Thus dx= -xdt 

– This might be 10 people over a timeframe of .1 year (~36.5 
days) 

• The rate of change of x over given time dt is dx/dt 

     This is just the sum of all of the flows! 

     For system, dx/dt =(-xdt)/dt=- x=-People*DeathRate 

       Because x (People) changes, this flow rate changes 
over the course of the time we are observing 

• We will sometimes write dx/dt as  

 

x dx
x x

dt
  



The Concept of “Analytic” Solutions 
• The model structure describes system behaviour 

implicitly 

– This indicates how short term changes (flows) depends on 
the state of the system 

– This does not explicitly state how the system evolves 

• Analytic (“closed form”, “exact”) solutions describe 
system behaviour as an explicit function of time 

– E.g. a+b*t+c*t2 , a +b*t, a*sin(t), et 

• For many systems we will be dealing with (nonlinear 
systems), an analytic solution is simply not derivable 

– Even when an analytic solution is possible, it is often most 
convenient to deal with simulations for most needs 



An Exact Solution to Our Problem 

• The state equation formulation of our system 
is  

 

     This is a linear differential equation with 
constant coefficients – a type of system that 
can be solved exactly. 

 

dx
x x

dt
  



Solution Procedure 

 

• Suppose we start x at time 0 with initial value 
x(0), and we want to find the value of x at time T 

• Assuming that x does not start at 0, it will never 
reach exactly 0, so we can divide the left side by 
it, and multiply the right side by dt 

 

 

• Integrating both sides 
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Completion of Derivation 
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So the stock x declines as a negative exponential in time T 
i.e. # of people remaining in the stock goes down exponentially w/time 



Fraction of Original People Still in 
Stock or Who have Left 

• Assuming no inflows, the fraction of people still in 
the stock at time T is just 

       (# of people in the stock at time T)/(initial # of 
people in the stock)= 

 

 

 

• Given that people either stay in the stock or leave, 
the fraction that have left by time T= 
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At Time=1 
• At time t=1, we have a fraction                           in the 

stock, and a fraction                  who have left 

• Note: By its Taylor Expansion 

 

 

 

• For small       , the higher order terms are very small, 
and this will be approximately 

• So by time 1  for small , approx 1- will remain 
after, and a fraction of  will have departed 
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Mean Time to Transition 
• People are leaving via the flow 

• Suppose we wish to determine the mean (average) 
time for a given person in the stock to leave 

• Recall: A mean for a continuous probability 
distribution p(t) is given by 

 

• Since           is the probability that will leave between 
t and t+dt, this is just the continuous  version of  
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Mean Time to Leave 
• p(t)dt here is the likelihood of a person leaving exactly 

between time t &dt+t 
– We start the simulation at t=0, so p(t)=0  for t<0 

– For t>0, P(leaving exactly between time t and dt+t)=P(leaving 
exactly between time t and t+dt|Still have not left by time 
t)P(Still have not left by time t) 

For T>0, P(Still have not left by time t)= 

For P(leaving exactly between time t and t+dt|Still have 
not left by time t) 

     Recall: For us, probability of leaving in a time dt 
always=dt 

     Thus P(leaving exactly between time t and t+dt|Still 
have not left by time t)= dt 

P(t)dt=P(leaving exact b.t. time t &dt+t)= 

 

Te 

  T Te dt e dt   



Derivation of Mean 

• P(t)dt=P(leaving exactly between time t &dt+t)= 

 

• Now that we have found the function p(t), we must 
do the integral                         to derive the mean 

 

 

• Here  
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Recall: Integration by Parts 

• We have 

• To solve the term in brackets, we will use 
integration by parts 

• Integration by parts exploits the following/l 

 

 

 

 

and thus 
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Recall: Integration by Parts 
• To solve                     we will use integration by 

parts 

• Here 

 

• From the previous page, we know  
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Thus 

• The mean time (the delay associated with a first 
order delay) is thus given by 

 

 

 

• So e.g. if we have an annualized rate of diabetes 
incident, the mean time to develop diabetes 
(independent of other risks) is just the 
reciprocal of that rate (i.e. 1 over that rate) 
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Computer Exercise:  Simulating a First 
Order Delay 

• Create a first order delay 

• Feed in a “step function” that rises suddenly 
at time 10. 

• How does the output from the stock change 
over time? 

 



Competing Risks 

• Suppose we have another outflow from the 
stock.  How does that change our mean time 
of proceeding specifically down flow 1 (here, 
developing diabetes)? 

People (x) Incident Cases of
Diabetes

Annualized Diabetes
Rate (alpha)

DeathsAnnualized Death
Rate (beta)



Competing Risks Stock Trajectory 
Solution Procedure 

 

• Suppose we start x at time 0 with initial value 
x(0), and we want to find the value of x at time T 

• This is just like our previous differential equation, 
except that “” has been replaced by “(+)” 

– The solution must therefore be the same as before, 
with the appropriate replacement 

– Thus 
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Mean Time to Leave: Competing Risks 
• p(t)dt here is the likelihood of a person leaving via flow 

1 (e.g. developing T2DM) exactly between time t &dt+t 
– We start the simulation at t=0, so p(t)=0  for t<0 
– For t>0, P(leaving on flow 1 exactly between time t 

&dt+t)=P(leaving on flow 1 exactly between time t 
&t+dt|Still have not left by time t)P(Still have not left by time 
t) 

For T>0, P(Still have not left by time T)= 
For P(leaving exactly between time t and t+dt|Still have 

not left by time t) 
     Recall: For us, probability of leaving in a time dt 

always=dt 
     Thus P(leaving exactly between time t and t+dt|Still 

have not left by time t)= dt 
P(t)dt=P(leaving exact b.t. time t &dt+t) 
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Mean Time to Transition via Flow 1: 
Competing Risks 

• By the same procedure as before, we have 

 

 

• Using the formula we derived for the integral 
expression, we have 

 

 

• Note that this correctly approaches the single-
flow case as 0 
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Equilibrium Value of a First-Order Delay 

• Suppose we have flow of rate i into a stock with 
a first-order delay out 

– This could be from just a single flow, or many flows 

• The value of the stock will approach an 
equilibrium where inflow=outflow 

 



Equilibrium Value of 1st Order Delay 
• Recall: Outflow rate for 1st order delay=x 

– Note that this depends on the value of the stock! 

• Inflow rate=i 

• At equilibrium, the level of the stock must be such 
that inflow=outflow 
– For our case, we have 

         x=i 

  Thus x=i/ 

   The lower the chance of leaving per time unit (or 
the longer the delay), the larger the equilibrium 
value of the stock must be to make outflow=inflow 

 

 



Computer Exercise:  Simulating a First 
Order Delay 

• Create a first order delay 

• Feed in a “step function” that rises suddenly 
from 0 to 20 at time 10 

        Use formula if then else(Time > 10, 20, 0) 

• Questions to ponder 

– How does the output from the stock change over 
time? 

– How does the equilibrium value of the stock vary 
with chance of proceeding (alpha)? 

 



Department of Computer 
Science 

First Order Delays in Action: 
Simple SIT Model 

S I T
New infections New Recovery

Newly Susceptible

Immunity loss

Delay

Per infected contact

infection rate

Mean Contacts

Per Capita

Total Population
Mean Infectious

Contacts Per
Susceptible

Per Susceptible

Incidence Rate

Cumulative

Illnesses
New Illness

Prevalence
Recovery Delay

Initial Population



First Order Delays in Action: 
Simple SIT Model 

 



Recall: Simple First-Order Decay 

 

People with
Virulent
Infection Deaths from

Infection

Mean time until
Death

Use Formula:  People with Virulent Infection/Mean time until Death 

Use Initial Value:   1000 



First-Order Decay 
(Variant of Last Time) 

 

Use Formula:  People with Virulent Infection*Per Month Likelihood of Death 

Use Initial Value:   1000 

Use Value:   0.2 

Recall:  How does this 
relate to the mean time 
until death? 



People in Stock 

 



Flow Rate of Deaths 

 



Cumulative Deaths 

 



Closeup 

 

Why this gap? 



50% per Month Risk of Deaths 

 

Why this gap? 



Answer: The “Gap” is Present Because not 
all 1000 people are at risk for a month! 

• The value of the stock is declining over the first 
month 

• The rate of death indicates that 20% of the 
population will die per month 

• While we may have been expecting 200 people 
(20% of the 1000) to die, this (erroneously) assumes 
that all 1000 were at risk for the entire month 
– In fact, because the stock was declining, there were 

considerably fewer people at risk, meaning that we have 
fewer deaths 

• If we had maintained 1000 people in the stock for 
the 1st month, 1000 people would have died! 

 



Recall: First Order Delay 

 

People (x)
Deaths

Annual Risk of
Death (alpha)

Immigration

Immigration Rate

Use Formula:  People (x) * Annual Risk of Death (alpha) 

Use Initial Value:   1000 

Use Value:   0 Use Value:   0.05 



Questions 

• What is behaviour of stock x? 

• What is the mean time until people die? 

• Suppose we had a constant inflow – what is 
the behaviour then? 

 



Answers 

• Behaviour Of Stock 

 

 

 

 

• Mean Time Until Death 

Recall that if coefficient of first order delay is  , then 
mean time is 1/    (Here, 1/0.05  = 20 years) 
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Equilibrium Value of a First-Order Delay 

• Suppose we have flow of rate i into a stock with 
a first-order delay out 

– This could be from just a single flow, or many flows 

• The value of the stock will approach an 
equilibrium where inflow=outflow 

 



Equilibrium Value of 1st Order Delay 
• Recall: Outflow rate for 1st order delay=x 

– Note that this depends on the value of the stock! 

• Inflow rate=i 

• At equilibrium, the level of the stock must be such that 
inflow=outflow 
– For our case, we have 

         x=i 

  Thus x=i/   

           (equivalently, x = i * Mean time to Transition) 

   The lower the chance of leaving per time unit (or the 
longer the delay), the larger the equilibrium value of 
the stock must be to make outflow=inflow 

 

 



Scenarios for First Order Delay:  
Variation in Inflow Rates 

• For different immigration (inflows) (what do you 
expect?) 

– Inflow=10 

– Inflow=20 

– Inflow=50 

– Inflow=100 

– Why do you see this “goal seeking” pattern? 

– What is the “goal” being sought? 

 

 



Behaviour of Stock for Different Inflows 

 

Why do we see this behaviour? 



Behaviour of Outflow for Different Inflows 

 

Why do we see this behaviour?   Imbalance (gap) causes change to stock 
(rise or fall)  change to outflow to lower gap until outflow=inflow 



Goal Seeking Behaviour 
• The goal seeking behaviour is associated with a 

negative feedback loop 

– The larger the population in the stock, the more people 
die per year 

• If we have more people coming in than are going 
out per year, the stock (and, hence, outflow!) rises 
until the point where inflow=outflows 

• If we have fewer people coming in than are going 
out per year, the stock declines (& outflow) declines 
until the point where inflow=outflows 

 

 



 

What does this tell us about how the system would respond to 
a sudden change in immigration? 

As a Causal Loop Diagram 



Response to a Change 

• Feed in an immigration “step function” that rises 
suddenly from 0 to 20 at time 50 

 

 

 

 

 

 

• Set the Initial Value of Stock to 0 

• How does the stock change over time? 

 



Create a Custom Graph & Display it as 
an Input-Output Object 

 

 

 

 

• Editing 

 



Create Input-Output Object 
(for Synthesim) 

 



Stock Starting Empty 
Flow Rates 

 

Inflow and Outflow
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How would this change with alpha? 



 

How would this change with alpha? 

Stock Starting Empty? 
Value of Stock (Alpha=.05) 



 

For Different Values of (1/) Alpha 
Flow Rates (Outflow Rises until = Inflow) 

This is for the flows.  What do stocks do? 



 

For Different Values of (1/) Alpha 
Value of Stocks 

Why do we see this behaviour?   A longer time delay (or smaller chance 
of leaving per unit time) requires x to be larger to make outflow=inflow 



Outflows as Delayed Version of Inputs 

 



 

Deaths
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What if stock doesn’t start empty? 
Decays at first (no inflow) & then output 
responds with delayed version of input 



Simple SIT Model 
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Classic Feedbacks 
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Dynamics 

 

State variables over time 
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Broadening the Model Boundaries:  
Endogenous Recovery Delay 

 

S I R
New infections New Recovery
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Broadening the Model Boundaries:  
Endogenous Recovery Delay 

Infectives

New Infections
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for Treatment
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A Different Behaviour Mode 

 

Prevalence, Infectious 

1 1 
200,000 Person 

0.5 1 
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0 1 
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Time (Day) 
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Structure as Shaping Behaviour 

• System structure is defined by 
– Stocks 

– Flows 

– Connections between them 

• Nonlinearity: The behaviour of the whole is more 
than the sum of the behaviour of the parts 
– “Emergent” behaviour would not be anticipated from 

simple behaviour of each piece in turn 

• Stock and flow structure (including feedbacks) of a 
system determines the qualitative behaviour modes 
that the system can take on 

 


